Tap the blue circles to see an explanation.
$$ \begin{aligned}(x+6)(x-6)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2-6x+6x-36 \xlongequal{ } \\[1 em] & \xlongequal{ }x^2 -\cancel{6x}+ \cancel{6x}-36 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2-36\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x+6}\right) $ by each term in $ \left( x-6\right) $. $$ \left( \color{blue}{x+6}\right) \cdot \left( x-6\right) = x^2 -\cancel{6x}+ \cancel{6x}-36 $$ |
② | Combine like terms: $$ x^2 \, \color{blue}{ -\cancel{6x}} \,+ \, \color{blue}{ \cancel{6x}} \,-36 = x^2-36 $$ |