Tap the blue circles to see an explanation.
$$ \begin{aligned}(x+6)(x^2-2x-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^3-2x^2-3x+6x^2-12x-18 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^3+4x^2-15x-18\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x+6}\right) $ by each term in $ \left( x^2-2x-3\right) $. $$ \left( \color{blue}{x+6}\right) \cdot \left( x^2-2x-3\right) = x^3-2x^2-3x+6x^2-12x-18 $$ |
② | Combine like terms: $$ x^3 \color{blue}{-2x^2} \color{red}{-3x} + \color{blue}{6x^2} \color{red}{-12x} -18 = x^3+ \color{blue}{4x^2} \color{red}{-15x} -18 $$ |