Tap the blue circles to see an explanation.
$$ \begin{aligned}(x+5)(x^2-5x+25)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^3-5x^2+25x+5x^2-25x+125 \xlongequal{ } \\[1 em] & \xlongequal{ }x^3 -\cancel{5x^2}+ \cancel{25x}+ \cancel{5x^2} -\cancel{25x}+125 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^3+125\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x+5}\right) $ by each term in $ \left( x^2-5x+25\right) $. $$ \left( \color{blue}{x+5}\right) \cdot \left( x^2-5x+25\right) = \\ = x^3 -\cancel{5x^2}+ \cancel{25x}+ \cancel{5x^2} -\cancel{25x}+125 $$ |
② | Combine like terms: $$ x^3 \, \color{blue}{ -\cancel{5x^2}} \,+ \, \color{green}{ \cancel{25x}} \,+ \, \color{blue}{ \cancel{5x^2}} \, \, \color{green}{ -\cancel{25x}} \,+125 = x^3+125 $$ |