Tap the blue circles to see an explanation.
$$ \begin{aligned}(x+4y+3z)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2+8xy+6xz+16y^2+24yz+9z^2\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x+4y+3z}\right) $ by each term in $ \left( x+4y+3z\right) $. $$ \left( \color{blue}{x+4y+3z}\right) \cdot \left( x+4y+3z\right) = x^2+4xy+3xz+4xy+16y^2+12yz+3xz+12yz+9z^2 $$ |
② | Combine like terms: $$ x^2+ \color{blue}{4xy} + \color{red}{3xz} + \color{blue}{4xy} +16y^2+ \color{green}{12yz} + \color{red}{3xz} + \color{green}{12yz} +9z^2 = \\ = x^2+ \color{blue}{8xy} + \color{red}{6xz} +16y^2+ \color{green}{24yz} +9z^2 $$ |