Tap the blue circles to see an explanation.
$$ \begin{aligned}(x+4)(x+3)(x+5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2+3x+4x+12)(x+5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2+7x+12)(x+5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x^3+5x^2+7x^2+35x+12x+60 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}x^3+12x^2+47x+60\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x+4}\right) $ by each term in $ \left( x+3\right) $. $$ \left( \color{blue}{x+4}\right) \cdot \left( x+3\right) = x^2+3x+4x+12 $$ |
② | Combine like terms: $$ x^2+ \color{blue}{3x} + \color{blue}{4x} +12 = x^2+ \color{blue}{7x} +12 $$ |
③ | Multiply each term of $ \left( \color{blue}{x^2+7x+12}\right) $ by each term in $ \left( x+5\right) $. $$ \left( \color{blue}{x^2+7x+12}\right) \cdot \left( x+5\right) = x^3+5x^2+7x^2+35x+12x+60 $$ |
④ | Combine like terms: $$ x^3+ \color{blue}{5x^2} + \color{blue}{7x^2} + \color{red}{35x} + \color{red}{12x} +60 = x^3+ \color{blue}{12x^2} + \color{red}{47x} +60 $$ |