Tap the blue circles to see an explanation.
$$ \begin{aligned}(x+3y)^4& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}x^4+12x^3y+54x^2y^2+108xy^3+81y^4\end{aligned} $$ | |
① | $$ (x+3y)^4 = (x+3y)^2 \cdot (x+3y)^2 $$ |
② | Find $ \left(x+3y\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 3y }$. $$ \begin{aligned}\left(x+3y\right)^2 = \color{blue}{x^2} +2 \cdot x \cdot 3y + \color{red}{\left( 3y \right)^2} = x^2+6xy+9y^2\end{aligned} $$ |
③ | Multiply each term of $ \left( \color{blue}{x^2+6xy+9y^2}\right) $ by each term in $ \left( x^2+6xy+9y^2\right) $. $$ \left( \color{blue}{x^2+6xy+9y^2}\right) \cdot \left( x^2+6xy+9y^2\right) = \\ = x^4+6x^3y+9x^2y^2+6x^3y+36x^2y^2+54xy^3+9x^2y^2+54xy^3+81y^4 $$ |
④ | Combine like terms: $$ x^4+ \color{blue}{6x^3y} + \color{red}{9x^2y^2} + \color{blue}{6x^3y} + \color{green}{36x^2y^2} + \color{orange}{54xy^3} + \color{green}{9x^2y^2} + \color{orange}{54xy^3} +81y^4 = \\ = x^4+ \color{blue}{12x^3y} + \color{green}{54x^2y^2} + \color{orange}{108xy^3} +81y^4 $$ |