Tap the blue circles to see an explanation.
$$ \begin{aligned}(x+3)^2(x-5)(x+6)^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2+6x+9)(x-5)(x^3+18x^2+108x+216) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^3-5x^2+6x^2-30x+9x-45)(x^3+18x^2+108x+216) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(x^3+x^2-21x-45)(x^3+18x^2+108x+216) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}x^6+19x^5+105x^4-99x^3-2862x^2-9396x-9720\end{aligned} $$ | |
① | Find $ \left(x+3\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 3 }$. $$ \begin{aligned}\left(x+3\right)^2 = \color{blue}{x^2} +2 \cdot x \cdot 3 + \color{red}{3^2} = x^2+6x+9\end{aligned} $$Find $ \left(x+6\right)^3 $ using formula $$ (A + B) = A^3 + 3A^2B + 3AB^2 + B^3 $$where $ A = x $ and $ B = 6 $. $$ \left(x+6\right)^3 = x^3+3 \cdot x^2 \cdot 6 + 3 \cdot x \cdot 6^2+6^3 = x^3+18x^2+108x+216 $$ |
② | Multiply each term of $ \left( \color{blue}{x^2+6x+9}\right) $ by each term in $ \left( x-5\right) $. $$ \left( \color{blue}{x^2+6x+9}\right) \cdot \left( x-5\right) = x^3-5x^2+6x^2-30x+9x-45 $$ |
③ | Combine like terms: $$ x^3 \color{blue}{-5x^2} + \color{blue}{6x^2} \color{red}{-30x} + \color{red}{9x} -45 = x^3+ \color{blue}{x^2} \color{red}{-21x} -45 $$ |
④ | Multiply each term of $ \left( \color{blue}{x^3+x^2-21x-45}\right) $ by each term in $ \left( x^3+18x^2+108x+216\right) $. $$ \left( \color{blue}{x^3+x^2-21x-45}\right) \cdot \left( x^3+18x^2+108x+216\right) = \\ = x^6+18x^5+108x^4+216x^3+x^5+18x^4+108x^3+216x^2-21x^4-378x^3-2268x^2-4536x-45x^3-810x^2-4860x-9720 $$ |
⑤ | Combine like terms: $$ x^6+ \color{blue}{18x^5} + \color{red}{108x^4} + \color{green}{216x^3} + \color{blue}{x^5} + \color{orange}{18x^4} + \color{blue}{108x^3} + \color{red}{216x^2} \color{orange}{-21x^4} \color{green}{-378x^3} \color{orange}{-2268x^2} \color{blue}{-4536x} \color{green}{-45x^3} \color{orange}{-810x^2} \color{blue}{-4860x} -9720 = \\ = x^6+ \color{blue}{19x^5} + \color{orange}{105x^4} \color{green}{-99x^3} \color{orange}{-2862x^2} \color{blue}{-9396x} -9720 $$ |