Tap the blue circles to see an explanation.
$$ \begin{aligned}(x+3)(x-3)(x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2-3x+3x-9)(x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2-9)(x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x^3+x^2-9x-9\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x+3}\right) $ by each term in $ \left( x-3\right) $. $$ \left( \color{blue}{x+3}\right) \cdot \left( x-3\right) = x^2 -\cancel{3x}+ \cancel{3x}-9 $$ |
② | Combine like terms: $$ x^2 \, \color{blue}{ -\cancel{3x}} \,+ \, \color{blue}{ \cancel{3x}} \,-9 = x^2-9 $$ |
③ | Multiply each term of $ \left( \color{blue}{x^2-9}\right) $ by each term in $ \left( x+1\right) $. $$ \left( \color{blue}{x^2-9}\right) \cdot \left( x+1\right) = x^3+x^2-9x-9 $$ |