Tap the blue circles to see an explanation.
$$ \begin{aligned}(x+2)\cdot2+4(x+2)+6& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x+4+4x+8+6 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6x+12+6 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}6x+18\end{aligned} $$ | |
① | $$ \left( \color{blue}{x+2}\right) \cdot 2 = 2x+4 $$Multiply $ \color{blue}{4} $ by $ \left( x+2\right) $ $$ \color{blue}{4} \cdot \left( x+2\right) = 4x+8 $$ |
② | Combine like terms: $$ \color{blue}{2x} + \color{red}{4} + \color{blue}{4x} + \color{red}{8} = \color{blue}{6x} + \color{red}{12} $$ |
③ | Combine like terms: $$ 6x+ \color{blue}{12} + \color{blue}{6} = 6x+ \color{blue}{18} $$ |