Tap the blue circles to see an explanation.
$$ \begin{aligned}(x+2)^2+((x-1)^2+1)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2+4x+4+(x^2-2x+1+1)^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2+4x+4+(x^2-2x+2)^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}x^2+4x+4+x^4-4x^3+8x^2-8x+4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}x^4-4x^3+9x^2-4x+8\end{aligned} $$ | |
① | Find $ \left(x+2\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 2 }$. $$ \begin{aligned}\left(x+2\right)^2 = \color{blue}{x^2} +2 \cdot x \cdot 2 + \color{red}{2^2} = x^2+4x+4\end{aligned} $$Find $ \left(x-1\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 1 }$. $$ \begin{aligned}\left(x-1\right)^2 = \color{blue}{x^2} -2 \cdot x \cdot 1 + \color{red}{1^2} = x^2-2x+1\end{aligned} $$ |
② | Combine like terms: $$ x^2-2x+ \color{blue}{1} + \color{blue}{1} = x^2-2x+ \color{blue}{2} $$ |
③ | Multiply each term of $ \left( \color{blue}{x^2-2x+2}\right) $ by each term in $ \left( x^2-2x+2\right) $. $$ \left( \color{blue}{x^2-2x+2}\right) \cdot \left( x^2-2x+2\right) = x^4-2x^3+2x^2-2x^3+4x^2-4x+2x^2-4x+4 $$ |
④ | Combine like terms: $$ x^4 \color{blue}{-2x^3} + \color{red}{2x^2} \color{blue}{-2x^3} + \color{green}{4x^2} \color{orange}{-4x} + \color{green}{2x^2} \color{orange}{-4x} +4 = x^4 \color{blue}{-4x^3} + \color{green}{8x^2} \color{orange}{-8x} +4 $$ |
⑤ | Combine like terms: $$ \color{blue}{x^2} + \color{red}{4x} + \color{green}{4} +x^4-4x^3+ \color{blue}{8x^2} \color{red}{-8x} + \color{green}{4} = x^4-4x^3+ \color{blue}{9x^2} \color{red}{-4x} + \color{green}{8} $$ |