Tap the blue circles to see an explanation.
$$ \begin{aligned}(x+2)(x+4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2+4x+2x+8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2+6x+8\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x+2}\right) $ by each term in $ \left( x+4\right) $. $$ \left( \color{blue}{x+2}\right) \cdot \left( x+4\right) = x^2+4x+2x+8 $$ |
② | Combine like terms: $$ x^2+ \color{blue}{4x} + \color{blue}{2x} +8 = x^2+ \color{blue}{6x} +8 $$ |