Tap the blue circles to see an explanation.
$$ \begin{aligned}(x+18)(x+10)^2(x+1)(x-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x+18)(x^2+20x+100)(x+1)(x-2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^3+20x^2+100x+18x^2+360x+1800)(x+1)(x-2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(x^3+38x^2+460x+1800)(x+1)(x-2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}(x^4+39x^3+498x^2+2260x+1800)(x-2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}x^5+37x^4+420x^3+1264x^2-2720x-3600\end{aligned} $$ | |
① | Find $ \left(x+10\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 10 }$. $$ \begin{aligned}\left(x+10\right)^2 = \color{blue}{x^2} +2 \cdot x \cdot 10 + \color{red}{10^2} = x^2+20x+100\end{aligned} $$ |
② | Multiply each term of $ \left( \color{blue}{x+18}\right) $ by each term in $ \left( x^2+20x+100\right) $. $$ \left( \color{blue}{x+18}\right) \cdot \left( x^2+20x+100\right) = x^3+20x^2+100x+18x^2+360x+1800 $$ |
③ | Combine like terms: $$ x^3+ \color{blue}{20x^2} + \color{red}{100x} + \color{blue}{18x^2} + \color{red}{360x} +1800 = x^3+ \color{blue}{38x^2} + \color{red}{460x} +1800 $$ |
④ | Multiply each term of $ \left( \color{blue}{x^3+38x^2+460x+1800}\right) $ by each term in $ \left( x+1\right) $. $$ \left( \color{blue}{x^3+38x^2+460x+1800}\right) \cdot \left( x+1\right) = x^4+x^3+38x^3+38x^2+460x^2+460x+1800x+1800 $$ |
⑤ | Combine like terms: $$ x^4+ \color{blue}{x^3} + \color{blue}{38x^3} + \color{red}{38x^2} + \color{red}{460x^2} + \color{green}{460x} + \color{green}{1800x} +1800 = \\ = x^4+ \color{blue}{39x^3} + \color{red}{498x^2} + \color{green}{2260x} +1800 $$ |
⑥ | Multiply each term of $ \left( \color{blue}{x^4+39x^3+498x^2+2260x+1800}\right) $ by each term in $ \left( x-2\right) $. $$ \left( \color{blue}{x^4+39x^3+498x^2+2260x+1800}\right) \cdot \left( x-2\right) = \\ = x^5-2x^4+39x^4-78x^3+498x^3-996x^2+2260x^2-4520x+1800x-3600 $$ |
⑦ | Combine like terms: $$ x^5 \color{blue}{-2x^4} + \color{blue}{39x^4} \color{red}{-78x^3} + \color{red}{498x^3} \color{green}{-996x^2} + \color{green}{2260x^2} \color{orange}{-4520x} + \color{orange}{1800x} -3600 = \\ = x^5+ \color{blue}{37x^4} + \color{red}{420x^3} + \color{green}{1264x^2} \color{orange}{-2720x} -3600 $$ |