Tap the blue circles to see an explanation.
$$ \begin{aligned}(x+1)^4& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}x^4+4x^3+6x^2+4x+1\end{aligned} $$ | |
① | $$ (x+1)^4 = (x+1)^2 \cdot (x+1)^2 $$ |
② | Find $ \left(x+1\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 1 }$. $$ \begin{aligned}\left(x+1\right)^2 = \color{blue}{x^2} +2 \cdot x \cdot 1 + \color{red}{1^2} = x^2+2x+1\end{aligned} $$ |
③ | Multiply each term of $ \left( \color{blue}{x^2+2x+1}\right) $ by each term in $ \left( x^2+2x+1\right) $. $$ \left( \color{blue}{x^2+2x+1}\right) \cdot \left( x^2+2x+1\right) = x^4+2x^3+x^2+2x^3+4x^2+2x+x^2+2x+1 $$ |
④ | Combine like terms: $$ x^4+ \color{blue}{2x^3} + \color{red}{x^2} + \color{blue}{2x^3} + \color{green}{4x^2} + \color{orange}{2x} + \color{green}{x^2} + \color{orange}{2x} +1 = x^4+ \color{blue}{4x^3} + \color{green}{6x^2} + \color{orange}{4x} +1 $$ |