Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-y)(3x+4y)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x^2+4xy-3xy-4y^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3x^2+xy-4y^2\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-y}\right) $ by each term in $ \left( 3x+4y\right) $. $$ \left( \color{blue}{x-y}\right) \cdot \left( 3x+4y\right) = 3x^2+4xy-3xy-4y^2 $$ |
② | Combine like terms: $$ 3x^2+ \color{blue}{4xy} \color{blue}{-3xy} -4y^2 = 3x^2+ \color{blue}{xy} -4y^2 $$ |