Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-b)(x-c)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2-cx-bx+bc \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}bc-bx-cx+x^2\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-b}\right) $ by each term in $ \left( x-c\right) $. $$ \left( \color{blue}{x-b}\right) \cdot \left( x-c\right) = x^2-cx-bx+bc $$ |
② | Combine like terms: $$ bc-bx-cx+x^2 = bc-bx-cx+x^2 $$ |