Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-6)(x+5)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x-6)(x^2+10x+25) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^3+10x^2+25x-6x^2-60x-150 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x^3+4x^2-35x-150\end{aligned} $$ | |
① | Find $ \left(x+5\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 5 }$. $$ \begin{aligned}\left(x+5\right)^2 = \color{blue}{x^2} +2 \cdot x \cdot 5 + \color{red}{5^2} = x^2+10x+25\end{aligned} $$ |
② | Multiply each term of $ \left( \color{blue}{x-6}\right) $ by each term in $ \left( x^2+10x+25\right) $. $$ \left( \color{blue}{x-6}\right) \cdot \left( x^2+10x+25\right) = x^3+10x^2+25x-6x^2-60x-150 $$ |
③ | Combine like terms: $$ x^3+ \color{blue}{10x^2} + \color{red}{25x} \color{blue}{-6x^2} \color{red}{-60x} -150 = x^3+ \color{blue}{4x^2} \color{red}{-35x} -150 $$ |