Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-6)(4x^2+x-7)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4x^3+x^2-7x-24x^2-6x+42 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^3-23x^2-13x+42\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-6}\right) $ by each term in $ \left( 4x^2+x-7\right) $. $$ \left( \color{blue}{x-6}\right) \cdot \left( 4x^2+x-7\right) = 4x^3+x^2-7x-24x^2-6x+42 $$ |
② | Combine like terms: $$ 4x^3+ \color{blue}{x^2} \color{red}{-7x} \color{blue}{-24x^2} \color{red}{-6x} +42 = 4x^3 \color{blue}{-23x^2} \color{red}{-13x} +42 $$ |