Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-5)(2x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x^2+x-10x-5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}2x^2-9x-5\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-5}\right) $ by each term in $ \left( 2x+1\right) $. $$ \left( \color{blue}{x-5}\right) \cdot \left( 2x+1\right) = 2x^2+x-10x-5 $$ |
② | Combine like terms: $$ 2x^2+ \color{blue}{x} \color{blue}{-10x} -5 = 2x^2 \color{blue}{-9x} -5 $$ |