Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-4)(x+11)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2+11x-4x-44 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2+7x-44\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-4}\right) $ by each term in $ \left( x+11\right) $. $$ \left( \color{blue}{x-4}\right) \cdot \left( x+11\right) = x^2+11x-4x-44 $$ |
② | Combine like terms: $$ x^2+ \color{blue}{11x} \color{blue}{-4x} -44 = x^2+ \color{blue}{7x} -44 $$ |