Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-3)(x+5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2+5x-3x-15 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2+2x-15\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-3}\right) $ by each term in $ \left( x+5\right) $. $$ \left( \color{blue}{x-3}\right) \cdot \left( x+5\right) = x^2+5x-3x-15 $$ |
② | Combine like terms: $$ x^2+ \color{blue}{5x} \color{blue}{-3x} -15 = x^2+ \color{blue}{2x} -15 $$ |