Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-3)(x+1)\cdot2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2+x-3x-3)\cdot2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2-2x-3)\cdot2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}2x^2-4x-6\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-3}\right) $ by each term in $ \left( x+1\right) $. $$ \left( \color{blue}{x-3}\right) \cdot \left( x+1\right) = x^2+x-3x-3 $$ |
② | Combine like terms: $$ x^2+ \color{blue}{x} \color{blue}{-3x} -3 = x^2 \color{blue}{-2x} -3 $$ |
③ | $$ \left( \color{blue}{x^2-2x-3}\right) \cdot 2 = 2x^2-4x-6 $$ |