Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-3)(x-1)(x+2)(x+2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2-x-3x+3)(x+2)(x+2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2-4x+3)(x+2)(x+2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(x^3+2x^2-4x^2-8x+3x+6)(x+2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}(x^3-2x^2-5x+6)(x+2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}x^4-9x^2-4x+12\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-3}\right) $ by each term in $ \left( x-1\right) $. $$ \left( \color{blue}{x-3}\right) \cdot \left( x-1\right) = x^2-x-3x+3 $$ |
② | Combine like terms: $$ x^2 \color{blue}{-x} \color{blue}{-3x} +3 = x^2 \color{blue}{-4x} +3 $$ |
③ | Multiply each term of $ \left( \color{blue}{x^2-4x+3}\right) $ by each term in $ \left( x+2\right) $. $$ \left( \color{blue}{x^2-4x+3}\right) \cdot \left( x+2\right) = x^3+2x^2-4x^2-8x+3x+6 $$ |
④ | Combine like terms: $$ x^3+ \color{blue}{2x^2} \color{blue}{-4x^2} \color{red}{-8x} + \color{red}{3x} +6 = x^3 \color{blue}{-2x^2} \color{red}{-5x} +6 $$ |
⑤ | Multiply each term of $ \left( \color{blue}{x^3-2x^2-5x+6}\right) $ by each term in $ \left( x+2\right) $. $$ \left( \color{blue}{x^3-2x^2-5x+6}\right) \cdot \left( x+2\right) = \\ = x^4+ \cancel{2x^3} -\cancel{2x^3}-4x^2-5x^2-10x+6x+12 $$ |
⑥ | Combine like terms: $$ x^4+ \, \color{blue}{ \cancel{2x^3}} \, \, \color{blue}{ -\cancel{2x^3}} \, \color{green}{-4x^2} \color{green}{-5x^2} \color{orange}{-10x} + \color{orange}{6x} +12 = x^4 \color{green}{-9x^2} \color{orange}{-4x} +12 $$ |