Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-3)(5x^2-x+11)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}5x^3-x^2+11x-15x^2+3x-33 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}5x^3-16x^2+14x-33\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-3}\right) $ by each term in $ \left( 5x^2-x+11\right) $. $$ \left( \color{blue}{x-3}\right) \cdot \left( 5x^2-x+11\right) = 5x^3-x^2+11x-15x^2+3x-33 $$ |
② | Combine like terms: $$ 5x^3 \color{blue}{-x^2} + \color{red}{11x} \color{blue}{-15x^2} + \color{red}{3x} -33 = 5x^3 \color{blue}{-16x^2} + \color{red}{14x} -33 $$ |