Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-3)(-x^2+2x+20)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-x^3+2x^2+20x+3x^2-6x-60 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-x^3+5x^2+14x-60\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-3}\right) $ by each term in $ \left( -x^2+2x+20\right) $. $$ \left( \color{blue}{x-3}\right) \cdot \left( -x^2+2x+20\right) = -x^3+2x^2+20x+3x^2-6x-60 $$ |
② | Combine like terms: $$ -x^3+ \color{blue}{2x^2} + \color{red}{20x} + \color{blue}{3x^2} \color{red}{-6x} -60 = -x^3+ \color{blue}{5x^2} + \color{red}{14x} -60 $$ |