Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-2)^2(x+3)(x+1)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2-4x+4)(x+3)(x^2+2x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^3+3x^2-4x^2-12x+4x+12)(x^2+2x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(x^3-x^2-8x+12)(x^2+2x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}x^5+x^4-9x^3-5x^2+16x+12\end{aligned} $$ | |
① | Find $ \left(x-2\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 2 }$. $$ \begin{aligned}\left(x-2\right)^2 = \color{blue}{x^2} -2 \cdot x \cdot 2 + \color{red}{2^2} = x^2-4x+4\end{aligned} $$Find $ \left(x+1\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 1 }$. $$ \begin{aligned}\left(x+1\right)^2 = \color{blue}{x^2} +2 \cdot x \cdot 1 + \color{red}{1^2} = x^2+2x+1\end{aligned} $$ |
② | Multiply each term of $ \left( \color{blue}{x^2-4x+4}\right) $ by each term in $ \left( x+3\right) $. $$ \left( \color{blue}{x^2-4x+4}\right) \cdot \left( x+3\right) = x^3+3x^2-4x^2-12x+4x+12 $$ |
③ | Combine like terms: $$ x^3+ \color{blue}{3x^2} \color{blue}{-4x^2} \color{red}{-12x} + \color{red}{4x} +12 = x^3 \color{blue}{-x^2} \color{red}{-8x} +12 $$ |
④ | Multiply each term of $ \left( \color{blue}{x^3-x^2-8x+12}\right) $ by each term in $ \left( x^2+2x+1\right) $. $$ \left( \color{blue}{x^3-x^2-8x+12}\right) \cdot \left( x^2+2x+1\right) = \\ = x^5+2x^4+x^3-x^4-2x^3-x^2-8x^3-16x^2-8x+12x^2+24x+12 $$ |
⑤ | Combine like terms: $$ x^5+ \color{blue}{2x^4} + \color{red}{x^3} \color{blue}{-x^4} \color{green}{-2x^3} \color{orange}{-x^2} \color{green}{-8x^3} \color{blue}{-16x^2} \color{red}{-8x} + \color{blue}{12x^2} + \color{red}{24x} +12 = \\ = x^5+ \color{blue}{x^4} \color{green}{-9x^3} \color{blue}{-5x^2} + \color{red}{16x} +12 $$ |