Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-2)(x-4)(x-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2-4x-2x+8)(x-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2-6x+8)(x-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x^3-3x^2-6x^2+18x+8x-24 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}x^3-9x^2+26x-24\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-2}\right) $ by each term in $ \left( x-4\right) $. $$ \left( \color{blue}{x-2}\right) \cdot \left( x-4\right) = x^2-4x-2x+8 $$ |
② | Combine like terms: $$ x^2 \color{blue}{-4x} \color{blue}{-2x} +8 = x^2 \color{blue}{-6x} +8 $$ |
③ | Multiply each term of $ \left( \color{blue}{x^2-6x+8}\right) $ by each term in $ \left( x-3\right) $. $$ \left( \color{blue}{x^2-6x+8}\right) \cdot \left( x-3\right) = x^3-3x^2-6x^2+18x+8x-24 $$ |
④ | Combine like terms: $$ x^3 \color{blue}{-3x^2} \color{blue}{-6x^2} + \color{red}{18x} + \color{red}{8x} -24 = x^3 \color{blue}{-9x^2} + \color{red}{26x} -24 $$ |