Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-2)(x+5)(x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2+5x-2x-10)(x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2+3x-10)(x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x^3+x^2+3x^2+3x-10x-10 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}x^3+4x^2-7x-10\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-2}\right) $ by each term in $ \left( x+5\right) $. $$ \left( \color{blue}{x-2}\right) \cdot \left( x+5\right) = x^2+5x-2x-10 $$ |
② | Combine like terms: $$ x^2+ \color{blue}{5x} \color{blue}{-2x} -10 = x^2+ \color{blue}{3x} -10 $$ |
③ | Multiply each term of $ \left( \color{blue}{x^2+3x-10}\right) $ by each term in $ \left( x+1\right) $. $$ \left( \color{blue}{x^2+3x-10}\right) \cdot \left( x+1\right) = x^3+x^2+3x^2+3x-10x-10 $$ |
④ | Combine like terms: $$ x^3+ \color{blue}{x^2} + \color{blue}{3x^2} + \color{red}{3x} \color{red}{-10x} -10 = x^3+ \color{blue}{4x^2} \color{red}{-7x} -10 $$ |