Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-2)(x+3)(x-\frac{1}{2})(x+\frac{1}{3})& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2+3x-2x-6)(x-\frac{1}{2})(x+\frac{1}{3}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2+x-6)(x-\frac{1}{2})(x+\frac{1}{3}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}(x^2+x-6)\frac{2x-1}{2}\frac{3x+1}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{2x^3+x^2-13x+6}{2}\frac{3x+1}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{6x^4+5x^3-38x^2+5x+6}{6}\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-2}\right) $ by each term in $ \left( x+3\right) $. $$ \left( \color{blue}{x-2}\right) \cdot \left( x+3\right) = x^2+3x-2x-6 $$ |
② | Combine like terms: $$ x^2+ \color{blue}{3x} \color{blue}{-2x} -6 = x^2+ \color{blue}{x} -6 $$ |
③ | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
④ | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
⑤ | Step 1: Write $ x^2+x-6 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} x^2+x-6 \cdot \frac{2x-1}{2} & \xlongequal{\text{Step 1}} \frac{x^2+x-6}{\color{red}{1}} \cdot \frac{2x-1}{2} \xlongequal{\text{Step 2}} \frac{ \left( x^2+x-6 \right) \cdot \left( 2x-1 \right) }{ 1 \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2x^3-x^2+2x^2-x-12x+6 }{ 2 } = \frac{2x^3+x^2-13x+6}{2} \end{aligned} $$ |
⑥ | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
⑦ | Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{2x^3+x^2-13x+6}{2} \cdot \frac{3x+1}{3} & \xlongequal{\text{Step 1}} \frac{ \left( 2x^3+x^2-13x+6 \right) \cdot \left( 3x+1 \right) }{ 2 \cdot 3 } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 6x^4+2x^3+3x^3+x^2-39x^2-13x+18x+6 }{ 6 } = \frac{6x^4+5x^3-38x^2+5x+6}{6} \end{aligned} $$ |