Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-2)(x+1)(x+2)(x+3)x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2+x-2x-2)(x+2)(x+3)x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2-x-2)(x+2)(x+3)x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(x^3+2x^2-x^2-2x-2x-4)(x+3)x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}(x^3+x^2-4x-4)(x+3)x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}(x^4+4x^3-x^2-16x-12)x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}x^5+4x^4-x^3-16x^2-12x\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-2}\right) $ by each term in $ \left( x+1\right) $. $$ \left( \color{blue}{x-2}\right) \cdot \left( x+1\right) = x^2+x-2x-2 $$ |
② | Combine like terms: $$ x^2+ \color{blue}{x} \color{blue}{-2x} -2 = x^2 \color{blue}{-x} -2 $$ |
③ | Multiply each term of $ \left( \color{blue}{x^2-x-2}\right) $ by each term in $ \left( x+2\right) $. $$ \left( \color{blue}{x^2-x-2}\right) \cdot \left( x+2\right) = x^3+2x^2-x^2-2x-2x-4 $$ |
④ | Combine like terms: $$ x^3+ \color{blue}{2x^2} \color{blue}{-x^2} \color{red}{-2x} \color{red}{-2x} -4 = x^3+ \color{blue}{x^2} \color{red}{-4x} -4 $$ |
⑤ | Multiply each term of $ \left( \color{blue}{x^3+x^2-4x-4}\right) $ by each term in $ \left( x+3\right) $. $$ \left( \color{blue}{x^3+x^2-4x-4}\right) \cdot \left( x+3\right) = x^4+3x^3+x^3+3x^2-4x^2-12x-4x-12 $$ |
⑥ | Combine like terms: $$ x^4+ \color{blue}{3x^3} + \color{blue}{x^3} + \color{red}{3x^2} \color{red}{-4x^2} \color{green}{-12x} \color{green}{-4x} -12 = x^4+ \color{blue}{4x^3} \color{red}{-x^2} \color{green}{-16x} -12 $$ |
⑦ | $$ \left( \color{blue}{x^4+4x^3-x^2-16x-12}\right) \cdot x = x^5+4x^4-x^3-16x^2-12x $$ |