Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-2)(x-4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2-4x-2x+8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2-6x+8\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-2}\right) $ by each term in $ \left( x-4\right) $. $$ \left( \color{blue}{x-2}\right) \cdot \left( x-4\right) = x^2-4x-2x+8 $$ |
② | Combine like terms: $$ x^2 \color{blue}{-4x} \color{blue}{-2x} +8 = x^2 \color{blue}{-6x} +8 $$ |