Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-2)(2x+1)(x-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(2x^2+x-4x-2)(x-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(2x^2-3x-2)(x-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}2x^3-6x^2-3x^2+9x-2x+6 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}2x^3-9x^2+7x+6\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-2}\right) $ by each term in $ \left( 2x+1\right) $. $$ \left( \color{blue}{x-2}\right) \cdot \left( 2x+1\right) = 2x^2+x-4x-2 $$ |
② | Combine like terms: $$ 2x^2+ \color{blue}{x} \color{blue}{-4x} -2 = 2x^2 \color{blue}{-3x} -2 $$ |
③ | Multiply each term of $ \left( \color{blue}{2x^2-3x-2}\right) $ by each term in $ \left( x-3\right) $. $$ \left( \color{blue}{2x^2-3x-2}\right) \cdot \left( x-3\right) = 2x^3-6x^2-3x^2+9x-2x+6 $$ |
④ | Combine like terms: $$ 2x^3 \color{blue}{-6x^2} \color{blue}{-3x^2} + \color{red}{9x} \color{red}{-2x} +6 = 2x^3 \color{blue}{-9x^2} + \color{red}{7x} +6 $$ |