Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-18y)(x+2y)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2+2xy-18xy-36y^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2-16xy-36y^2\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-18y}\right) $ by each term in $ \left( x+2y\right) $. $$ \left( \color{blue}{x-18y}\right) \cdot \left( x+2y\right) = x^2+2xy-18xy-36y^2 $$ |
② | Combine like terms: $$ x^2+ \color{blue}{2xy} \color{blue}{-18xy} -36y^2 = x^2 \color{blue}{-16xy} -36y^2 $$ |