Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-14-4i)(x-14+4i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-16i^2+x^2-28x+196\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-14-4i}\right) $ by each term in $ \left( x-14+4i\right) $. $$ \left( \color{blue}{x-14-4i}\right) \cdot \left( x-14+4i\right) = \\ = x^2-14x+ \cancel{4ix}-14x+196 -\cancel{56i} -\cancel{4ix}+ \cancel{56i}-16i^2 $$ |
② | Combine like terms: $$ x^2 \color{blue}{-14x} + \, \color{red}{ \cancel{4ix}} \, \color{blue}{-14x} +196 \, \color{orange}{ -\cancel{56i}} \, \, \color{red}{ -\cancel{4ix}} \,+ \, \color{orange}{ \cancel{56i}} \,-16i^2 = -16i^2+x^2 \color{blue}{-28x} +196 $$ |