Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-10)(x+10)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2+10x-10x-100 \xlongequal{ } \\[1 em] & \xlongequal{ }x^2+ \cancel{10x} -\cancel{10x}-100 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2-100\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-10}\right) $ by each term in $ \left( x+10\right) $. $$ \left( \color{blue}{x-10}\right) \cdot \left( x+10\right) = x^2+ \cancel{10x} -\cancel{10x}-100 $$ |
② | Combine like terms: $$ x^2+ \, \color{blue}{ \cancel{10x}} \, \, \color{blue}{ -\cancel{10x}} \,-100 = x^2-100 $$ |