Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-\frac{1}{a})(x-y)(x-z)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{ax-1}{a}(x-y)(x-z) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{ax^2-axy-x+y}{a}(x-z) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ax^3-ax^2y-ax^2z+axyz-x^2+xy+xz-yz}{a}\end{aligned} $$ | |
① | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
② | Step 1: Write $ x-y $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ax-1}{a} \cdot x-y & \xlongequal{\text{Step 1}} \frac{ax-1}{a} \cdot \frac{x-y}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( ax-1 \right) \cdot \left( x-y \right) }{ a \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ ax^2-axy-x+y }{ a } \end{aligned} $$ |
③ | Step 1: Write $ x-z $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ax^2-axy-x+y}{a} \cdot x-z & \xlongequal{\text{Step 1}} \frac{ax^2-axy-x+y}{a} \cdot \frac{x-z}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( ax^2-axy-x+y \right) \cdot \left( x-z \right) }{ a \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ ax^3-ax^2z-ax^2y+axyz-x^2+xz+xy-yz }{ a } = \frac{ax^3-ax^2y-ax^2z+axyz-x^2+xy+xz-yz}{a} \end{aligned} $$ |