Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-\frac{1}{2})(x+\frac{1}{3})& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2x-1}{2}\frac{3x+1}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{6x^2-x-1}{6}\end{aligned} $$ | |
① | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
② | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{2x-1}{2} \cdot \frac{3x+1}{3} & \xlongequal{\text{Step 1}} \frac{ \left( 2x-1 \right) \cdot \left( 3x+1 \right) }{ 2 \cdot 3 } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 6x^2+2x-3x-1 }{ 6 } = \frac{6x^2-x-1}{6} \end{aligned} $$ |