Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-\frac{1}{2})(x-\frac{1}{3})(x-\frac{1}{4})& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2x-1}{2}\frac{3x-1}{3}\frac{4x-1}{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{6x^2-5x+1}{6}\frac{4x-1}{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{24x^3-26x^2+9x-1}{24}\end{aligned} $$ | |
① | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
② | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
④ | Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{2x-1}{2} \cdot \frac{3x-1}{3} & \xlongequal{\text{Step 1}} \frac{ \left( 2x-1 \right) \cdot \left( 3x-1 \right) }{ 2 \cdot 3 } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 6x^2-2x-3x+1 }{ 6 } = \frac{6x^2-5x+1}{6} \end{aligned} $$ |
⑤ | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
⑥ | Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{6x^2-5x+1}{6} \cdot \frac{4x-1}{4} & \xlongequal{\text{Step 1}} \frac{ \left( 6x^2-5x+1 \right) \cdot \left( 4x-1 \right) }{ 6 \cdot 4 } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 24x^3-6x^2-20x^2+5x+4x-1 }{ 24 } = \frac{24x^3-26x^2+9x-1}{24} \end{aligned} $$ |