Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-1)(x+h-1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2+hx-x-x-h+1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}hx+x^2-h-2x+1\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-1}\right) $ by each term in $ \left( x+h-1\right) $. $$ \left( \color{blue}{x-1}\right) \cdot \left( x+h-1\right) = x^2+hx-x-x-h+1 $$ |
② | Combine like terms: $$ x^2+hx \color{blue}{-x} \color{blue}{-x} -h+1 = hx+x^2-h \color{blue}{-2x} +1 $$ |