Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-1)(x+3)\cdot(1+x)(3x-9)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2+3x-x-3)\cdot(1+x)(3x-9) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2+2x-3)\cdot(1+x)(3x-9) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(x^2+x^3+2x+2x^2-3-3x)(3x-9) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}(x^3+3x^2-x-3)(3x-9) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}3x^4-30x^2+27\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-1}\right) $ by each term in $ \left( x+3\right) $. $$ \left( \color{blue}{x-1}\right) \cdot \left( x+3\right) = x^2+3x-x-3 $$ |
② | Combine like terms: $$ x^2+ \color{blue}{3x} \color{blue}{-x} -3 = x^2+ \color{blue}{2x} -3 $$ |
③ | Multiply each term of $ \left( \color{blue}{x^2+2x-3}\right) $ by each term in $ \left( 1+x\right) $. $$ \left( \color{blue}{x^2+2x-3}\right) \cdot \left( 1+x\right) = x^2+x^3+2x+2x^2-3-3x $$ |
④ | Combine like terms: $$ \color{blue}{x^2} +x^3+ \color{red}{2x} + \color{blue}{2x^2} -3 \color{red}{-3x} = x^3+ \color{blue}{3x^2} \color{red}{-x} -3 $$ |
⑤ | Multiply each term of $ \left( \color{blue}{x^3+3x^2-x-3}\right) $ by each term in $ \left( 3x-9\right) $. $$ \left( \color{blue}{x^3+3x^2-x-3}\right) \cdot \left( 3x-9\right) = \\ = 3x^4 -\cancel{9x^3}+ \cancel{9x^3}-27x^2-3x^2+ \cancel{9x} -\cancel{9x}+27 $$ |
⑥ | Combine like terms: $$ 3x^4 \, \color{blue}{ -\cancel{9x^3}} \,+ \, \color{blue}{ \cancel{9x^3}} \, \color{green}{-27x^2} \color{green}{-3x^2} + \, \color{orange}{ \cancel{9x}} \, \, \color{orange}{ -\cancel{9x}} \,+27 = 3x^4 \color{green}{-30x^2} +27 $$ |