Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-1)(x+2)(x-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2+2x-x-2)(x-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2+x-2)(x-3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x^3-3x^2+x^2-3x-2x+6 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}x^3-2x^2-5x+6\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-1}\right) $ by each term in $ \left( x+2\right) $. $$ \left( \color{blue}{x-1}\right) \cdot \left( x+2\right) = x^2+2x-x-2 $$ |
② | Combine like terms: $$ x^2+ \color{blue}{2x} \color{blue}{-x} -2 = x^2+ \color{blue}{x} -2 $$ |
③ | Multiply each term of $ \left( \color{blue}{x^2+x-2}\right) $ by each term in $ \left( x-3\right) $. $$ \left( \color{blue}{x^2+x-2}\right) \cdot \left( x-3\right) = x^3-3x^2+x^2-3x-2x+6 $$ |
④ | Combine like terms: $$ x^3 \color{blue}{-3x^2} + \color{blue}{x^2} \color{red}{-3x} \color{red}{-2x} +6 = x^3 \color{blue}{-2x^2} \color{red}{-5x} +6 $$ |