Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-1)(x-1)(x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2-x-x+1)(x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2-2x+1)(x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x^3+x^2-2x^2-2x+x+1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}x^3-x^2-x+1\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-1}\right) $ by each term in $ \left( x-1\right) $. $$ \left( \color{blue}{x-1}\right) \cdot \left( x-1\right) = x^2-x-x+1 $$ |
② | Combine like terms: $$ x^2 \color{blue}{-x} \color{blue}{-x} +1 = x^2 \color{blue}{-2x} +1 $$ |
③ | Multiply each term of $ \left( \color{blue}{x^2-2x+1}\right) $ by each term in $ \left( x+1\right) $. $$ \left( \color{blue}{x^2-2x+1}\right) \cdot \left( x+1\right) = x^3+x^2-2x^2-2x+x+1 $$ |
④ | Combine like terms: $$ x^3+ \color{blue}{x^2} \color{blue}{-2x^2} \color{red}{-2x} + \color{red}{x} +1 = x^3 \color{blue}{-x^2} \color{red}{-x} +1 $$ |