Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-1)(4x-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4x^2-3x-4x+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^2-7x+3\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-1}\right) $ by each term in $ \left( 4x-3\right) $. $$ \left( \color{blue}{x-1}\right) \cdot \left( 4x-3\right) = 4x^2-3x-4x+3 $$ |
② | Combine like terms: $$ 4x^2 \color{blue}{-3x} \color{blue}{-4x} +3 = 4x^2 \color{blue}{-7x} +3 $$ |