Tap the blue circles to see an explanation.
$$ \begin{aligned}(x+5)(x-5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2-5x+5x-25 \xlongequal{ } \\[1 em] & \xlongequal{ }x^2 -\cancel{5x}+ \cancel{5x}-25 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2-25\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x+5}\right) $ by each term in $ \left( x-5\right) $. $$ \left( \color{blue}{x+5}\right) \cdot \left( x-5\right) = x^2 -\cancel{5x}+ \cancel{5x}-25 $$ |
② | Combine like terms: $$ x^2 \, \color{blue}{ -\cancel{5x}} \,+ \, \color{blue}{ \cancel{5x}} \,-25 = x^2-25 $$ |