Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-4x\cdot2)(x+5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x-8x)(x+5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-7x(x+5) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-7x^2-35x\end{aligned} $$ | |
① | $$ 4 x \cdot 2 = 8 x $$ |
② | Combine like terms: $$ \color{blue}{x} \color{blue}{-8x} = \color{blue}{-7x} $$ |
③ | Multiply $ \color{blue}{-7x} $ by $ \left( x+5\right) $ $$ \color{blue}{-7x} \cdot \left( x+5\right) = -7x^2-35x $$ |