Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-4x^2)(x+5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2+5x-4x^3-20x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-4x^3-19x^2+5x\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x-4x^2}\right) $ by each term in $ \left( x+5\right) $. $$ \left( \color{blue}{x-4x^2}\right) \cdot \left( x+5\right) = x^2+5x-4x^3-20x^2 $$ |
② | Combine like terms: $$ \color{blue}{x^2} +5x-4x^3 \color{blue}{-20x^2} = -4x^3 \color{blue}{-19x^2} +5x $$ |