Tap the blue circles to see an explanation.
$$ \begin{aligned}(x-3)(x\cdot2+2x+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x-3)(4x+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^2+x-12x-3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}4x^2-11x-3\end{aligned} $$ | |
① | Combine like terms: $$ \color{blue}{2x} + \color{blue}{2x} +1 = \color{blue}{4x} +1 $$ |
② | Multiply each term of $ \left( \color{blue}{x-3}\right) $ by each term in $ \left( 4x+1\right) $. $$ \left( \color{blue}{x-3}\right) \cdot \left( 4x+1\right) = 4x^2+x-12x-3 $$ |
③ | Combine like terms: $$ 4x^2+ \color{blue}{x} \color{blue}{-12x} -3 = 4x^2 \color{blue}{-11x} -3 $$ |