Tap the blue circles to see an explanation.
$$ \begin{aligned}(x^4+2x^2+4)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^8+4x^6+12x^4+16x^2+16\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x^4+2x^2+4}\right) $ by each term in $ \left( x^4+2x^2+4\right) $. $$ \left( \color{blue}{x^4+2x^2+4}\right) \cdot \left( x^4+2x^2+4\right) = x^8+2x^6+4x^4+2x^6+4x^4+8x^2+4x^4+8x^2+16 $$ |
② | Combine like terms: $$ x^8+ \color{blue}{2x^6} + \color{red}{4x^4} + \color{blue}{2x^6} + \color{green}{4x^4} + \color{orange}{8x^2} + \color{green}{4x^4} + \color{orange}{8x^2} +16 = \\ = x^8+ \color{blue}{4x^6} + \color{green}{12x^4} + \color{orange}{16x^2} +16 $$ |