Tap the blue circles to see an explanation.
$$ \begin{aligned}(x^3+1)(\frac{1}{4}-\frac{1}{2}x)+(x^2+1)(1+\frac{1}{2}x^2-\frac{1}{4}x)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(x^3+1)(\frac{1}{4}-\frac{x}{2})+(x^2+1)(1+\frac{x^2}{2}-\frac{x}{4}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}(x^3+1)\frac{-2x+1}{4}+(x^2+1)(\frac{x^2+2}{2}-\frac{x}{4}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{-2x^4+x^3-2x+1}{4}+(x^2+1)\frac{2x^2-x+4}{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} } }}}\frac{-2x^4+x^3-2x+1}{4}+\frac{2x^4-x^3+6x^2-x+4}{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle11}{\textcircled {11}} } }}}\frac{6x^2-3x+5}{4}\end{aligned} $$ | |
① | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot x & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x }{ 2 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ x }{ 2 } \end{aligned} $$ |
② | Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{2} \cdot x^2 & \xlongequal{\text{Step 1}} \frac{1}{2} \cdot \frac{x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x^2 }{ 2 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^2 }{ 2 } \end{aligned} $$ |
③ | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{4} \cdot x & \xlongequal{\text{Step 1}} \frac{1}{4} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x }{ 4 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ x }{ 4 } \end{aligned} $$ |
④ | To subtract raitonal expressions, both fractions must have the same denominator. |
⑤ | Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
⑥ | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{4} \cdot x & \xlongequal{\text{Step 1}} \frac{1}{4} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x }{ 4 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ x }{ 4 } \end{aligned} $$ |
⑦ | Step 1: Write $ x^3+1 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} x^3+1 \cdot \frac{-2x+1}{4} & \xlongequal{\text{Step 1}} \frac{x^3+1}{\color{red}{1}} \cdot \frac{-2x+1}{4} \xlongequal{\text{Step 2}} \frac{ \left( x^3+1 \right) \cdot \left( -2x+1 \right) }{ 1 \cdot 4 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -2x^4+x^3-2x+1 }{ 4 } \end{aligned} $$ |
⑧ | To subtract raitonal expressions, both fractions must have the same denominator. |
⑨ | Step 1: Write $ x^3+1 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} x^3+1 \cdot \frac{-2x+1}{4} & \xlongequal{\text{Step 1}} \frac{x^3+1}{\color{red}{1}} \cdot \frac{-2x+1}{4} \xlongequal{\text{Step 2}} \frac{ \left( x^3+1 \right) \cdot \left( -2x+1 \right) }{ 1 \cdot 4 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -2x^4+x^3-2x+1 }{ 4 } \end{aligned} $$ |
⑩ | Step 1: Write $ x^2+1 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} x^2+1 \cdot \frac{2x^2-x+4}{4} & \xlongequal{\text{Step 1}} \frac{x^2+1}{\color{red}{1}} \cdot \frac{2x^2-x+4}{4} \xlongequal{\text{Step 2}} \frac{ \left( x^2+1 \right) \cdot \left( 2x^2-x+4 \right) }{ 1 \cdot 4 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2x^4-x^3+4x^2+2x^2-x+4 }{ 4 } = \frac{2x^4-x^3+6x^2-x+4}{4} \end{aligned} $$ |
⑪ | To add expressions with the same denominators, we add the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{-2x^4+x^3-2x+1}{4} + \frac{2x^4-x^3+6x^2-x+4}{4} & = \frac{-2x^4+x^3-2x+1}{\color{blue}{4}} + \frac{2x^4-x^3+6x^2-x+4}{\color{blue}{4}} = \\[1ex] &=\frac{ -2x^4+x^3-2x+1 + \left( 2x^4-x^3+6x^2-x+4 \right) }{ \color{blue}{ 4 }}= \frac{6x^2-3x+5}{4} \end{aligned} $$ |