Tap the blue circles to see an explanation.
$$ \begin{aligned}(x^3+x^2+x+1)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^6+2x^5+3x^4+4x^3+3x^2+2x+1\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x^3+x^2+x+1}\right) $ by each term in $ \left( x^3+x^2+x+1\right) $. $$ \left( \color{blue}{x^3+x^2+x+1}\right) \cdot \left( x^3+x^2+x+1\right) = \\ = x^6+x^5+x^4+x^3+x^5+x^4+x^3+x^2+x^4+x^3+x^2+x+x^3+x^2+x+1 $$ |
② | Combine like terms: $$ x^6+ \color{blue}{x^5} + \color{red}{x^4} + \color{green}{x^3} + \color{blue}{x^5} + \color{orange}{x^4} + \color{blue}{x^3} + \color{red}{x^2} + \color{orange}{x^4} + \color{green}{x^3} + \color{orange}{x^2} + \color{blue}{x} + \color{green}{x^3} + \color{orange}{x^2} + \color{blue}{x} +1 = \\ = x^6+ \color{blue}{2x^5} + \color{orange}{3x^4} + \color{green}{4x^3} + \color{orange}{3x^2} + \color{blue}{2x} +1 $$ |