Tap the blue circles to see an explanation.
$$ \begin{aligned}(x^2+4)(x^2-6)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^4-6x^2+4x^2-24 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^4-2x^2-24\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x^2+4}\right) $ by each term in $ \left( x^2-6\right) $. $$ \left( \color{blue}{x^2+4}\right) \cdot \left( x^2-6\right) = x^4-6x^2+4x^2-24 $$ |
② | Combine like terms: $$ x^4 \color{blue}{-6x^2} + \color{blue}{4x^2} -24 = x^4 \color{blue}{-2x^2} -24 $$ |